COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1106		SEMESTER	1 st
COURSE TITLE	LINEAR ALGEBRA			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			4	Л
			4	
COURSE TYPE		General background		
general background, specialbackground, specialised general knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek		
IS THE COURSE OFFERED TO ERASMUS STUDENTS		Yes		
COURSE WEBSITE (URL)		https://eclass.uniwa.gr/courses/NA232/		

(2) COURSE GOALS / LEARNING OUTCOMES

This course aims to provide students with mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies. Specifically, it is designed to introduce students to the theory of systems of linear equations and to mathematical proof. Topics include solving systems of linear equations, linear independence, linear transformations, matrix operations, determinants, vector spaces, eigenvalues and eigenvectors, and applications.

Learning Outcomes:

On completion of this course the student should be able to:

- Understand the basic concepts of analytic geometry in two and three dimensions.
- Solve systems of linear equations, including Gaussian elimination and matrix inversion, and interpret their results.
- Carry out matrix operations, including inverses and determinants.
- Understand the basic concepts of vector space and subspace.
- Demonstrate understanding of linear independence, span, and basis.
- Determine eigenvalues and eigenvectors and solve eigenvalue problems.

(3) COURSE CONTENT / SYLLABUS

• Elements of Analytic Geometry

Vectors and geometry in two and three space dimensions, scalar and vector products, linear combinations, projection. Straight lines and planes in three dimensions and the relationships between them.

• Linear Algebra

Systems of linear equations, row reduction and Echelon forms Matrix algebra: matrix operations, inverse of a matrix, invertible matrices Determinants

Vector spaces and subspaces: span, linear independence, bases and dimension. Inner product spaces: Scalar or inner products, Cauchy-Schwartz inequality, orthogonality, orthogonal projection, orthonormal bases, Gram-Schmidt process. Linear transformations: Row and Column rank of a matrix, applications to systems of equations, range, kernel, rank and nullity, invertibility of linear transformations, linear transformations and matrices.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of ICT in teaching. Use of mathematical software. Support learning through the electronic e-class platform. 		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	39	
described in detail. Lectures seminars laboratory practice	Practice exercises (tutorials)	13	
fieldwork, study and analysis of	Study of Lectures	65	
bibliography, tutorials, placements, clinical			
practice, art workshop, interactive teaching, educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning	Course total	117	
activity are given as well as the nours of non- directed study according to the			
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Final written examination: 100%		
Description of the evaluation procedure			
evaluation, summative or conclusive, multiple			
choice questionnaires, short-answer questions,			
open-ended questions, problem solving, written work. essav/report. oral examination. public			
presentation, laboratory work, clinical			
examination of patient, art interpretation, other			

(5) ATTACHED BIBLIOGRAPHY

- 1. G. Strang, Introduction to Linear Algebra, 5th edition, Wellesley-Cambridge Press, 2016.
- 2. G. Strang, Linear Algebra and its Applications, 4th edition, Cengage Learning, 2006.
- 3. D.C. Lay, S.R. Lay, J.J. McDonald, Linear Algebra and its Applications, 4th edition, Pearson, 2014.
- 4. S. Axler, Linear Algebra Done Right, 3rd edition, Springer, 2015.