COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1106		SEMESTER	$1^{\text {st }}$
COURSE TITLE	LINEAR ALGEBRA			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			4	4
COURSE TYPE general background, specialbackground, specialised general knowledge, skills development General background				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek		
ERASMUS STUDENTS		Yes		
COURSE WEBSITE (URL)		https://eclass.uniwa.gr/courses/NA232/		

(2) COURSE GOALS / LEARNING OUTCOMES

This course aims to provide students with mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies. Specifically, it is designed to introduce students to the theory of systems of linear equations and to mathematical proof. Topics include solving systems of linear equations, linear independence, linear transformations, matrix operations, determinants, vector spaces, eigenvalues and eigenvectors, and applications.

Learning Outcomes:

On completion of this course the student should be able to:

- Understand the basic concepts of analytic geometry in two and three dimensions.
- Solve systems of linear equations, including Gaussian elimination and matrix inversion, and interpret their results.
- Carry out matrix operations, including inverses and determinants.
- Understand the basic concepts of vector space and subspace.
- Demonstrate understanding of linear independence, span, and basis.
- Determine eigenvalues and eigenvectors and solve eigenvalue problems.

(3) COURSE CONTENT / SYLLABUS

- Elements of Analytic Geometry

Vectors and geometry in two and three space dimensions, scalar and vector products, linear combinations, projection. Straight lines and planes in three dimensions and the relationships between them.

- Linear Algebra

Systems of linear equations, row reduction and Echelon forms
Matrix algebra: matrix operations, inverse of a matrix, invertible matrices
Determinants
Vector spaces and subspaces: span, linear independence, bases and dimension. Inner product spaces: Scalar or inner products, Cauchy-Schwartz inequality, orthogonality, orthogonal projection, orthonormal bases, Gram-Schmidt process. Linear transformations: Row and Column rank of a matrix, applications to systems of equations, range, kernel, rank and nullity, invertibility of linear transformations, linear transformations and matrices.
(4) TEACHING and LEARNING METHODS - EVALUATION

(5) ATTACHED BIBLIOGRAPHY

1. G. Strang, Introduction to Linear Algebra, 5th edition, Wellesley-Cambridge Press, 2016.
2. G. Strang, Linear Algebra and its Applications, 4th edition, Cengage Learning, 2006.
3. D.C. Lay, S.R. Lay, J.J. McDonald, Linear Algebra and its Applications, 4th edition, Pearson, 2014.
4. S. Axler, Linear Algebra Done Right, 3rd edition, Springer, 2015.
