COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School of Engineering				
ACADEMIC UNIT	Department of Naval Architecture				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	NAOM	E1108	SEMESTER	2 nd	
COURSE TITLE	MATHEMATICAL ANALYSIS II				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)	
Lectures		5	6		
			0		
COURSE TYPE					
general background, specialbackground, specialised general knowledae.skills development		General background			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS		Νο			
COURSEWEBSITE(URL) https://eclass.		https://eclass.uniwa	a.gr/courses/NA216/		

(2) COURSE GOALS / LEARNING OUTCOMES

The purpose of this course is to provide students with the core mathematical skills and knowledge, particularly the use of multivariable and vector calculus, needed to perform fundamental mathematical procedures for solving engineering problems. It also aims to indicate the relevance of mathematics to engineering and applied science.

Learning Outcomes:

On completion of this course the student should be able to:

- solve first and second order ordinary differential equations
- manipulate partial derivatives, manipulate vectors
- apply the principles of double, line, and surface integrals
- formulate and solve problems using techniques of differential and integral calculus of several variables.

(3) COURSE CONTENT / SYLLABUS

1. Introduction to Ordinary Differential Equations

Definition, First order linear Ordinary Differential Equations (O.D.E.'s), Second order linear O.D.E.'s with constant coefficients. Laplace transform and its application for solving O.D.E.'s.

2. Functions of several variables

- Definition, graphs, Limits and Continuity in Higher Dimensions.
- Partial derivatives, Chain rule, Directional derivatives and gradient vectors, Tangent Planes and Differentials.
- Extreme Values and Saddle Points, Lagrange Multipliers.
- Taylor's formula for two variables

3. Vector-valued functions

- Definition, limits and continuity.
- Differentiation and integration.
- Parametric equations of curves.

4. Vector Calculus

- Scalar and vector fields.
- Differential operators (div, grad, curl).
- Conservative vector fields.

5. Line and surface integrals

- Line integrals: definition for a scalar field, derivation, applications. Definition for a vector field, derivation, applications. Path independence.
- Surface integrals: parametric representation of a surface, the fundamental vector product, surface element, definition and evaluation of surface integral.

6. Multiple integrals

Double and triple integrals, properties, techniques of integrations, Substitutions in multiple integrals, Green's theorem, Stokes' theorem.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face
USE OF INFORMATION AND	• Use of ICT in teaching.
	 Use of mathematical software.
TECHNOLOGY	 Support learning through the electronic

Use of ICT in teaching, laboratory education, communication with students	e-class platform.		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	52	
described in detail. Lectures seminars laboratory practice	Practice exercises (tutorials)	13	
fieldwork, study and analysis of	Study of Lectures	91	
bibliography, tutorials, placements, clinical			
practice, art workshop, interactive teaching, educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning			
non- directed study according to the	Course total	156	
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Final written examination: 100%		
Description of the evaluation procedure			
Language of evaluation, methods of evaluation, summative or conclusive, multiple			
choice questionnaires, short-answer questions,			
open-ended questions, problem solving, written			
presentation, laboratory work, clinical			
examination of patient, art interpretation,			
Uner			

(5) ATTACHED BIBLIOGRAPHY

- 1. R.L. Finney, M.D. Weir, F.R. Giordano, Thomas' Calculus, 12th edition, Addison-Wesley, 2010.
- 2. J.E. Marsden, A. Tromba, Vector Calculus, 5th edition, W. H. Freeman, 2003.
- 3. J.D. Logan, A First Course in Differential Equations, 3rd Edition, Springer, 2015.
- 4. H.M. Schey, *Div, Grad, Curl, and All That*: An Informal Text on Vector Calculus (Fourth Edition), W.W. Norton & Co. Inc.