COURSE OUTLINE

(1) GENERAL

SCHOOL	Schoo	School of Engineering		
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOE1110		SEMESTER	2°
COURSE TITLE	PHYSICS II			
INDEPENDE	NT TEAC	CHING ACTIVITIES	WEEKLY TEACHING HOURS	CREDITS (ECTS)
l		Lectures	3	6
		Laboratory	2	0
		Total	5	
COURSE TYPE		General background		
general background,				
specialbackground, specialised general				
knowledge, skills development				
PREREQUISITE				
COURSES:				
LANGUAGE OF		Greek		
INSTRUCTION and				
EXAMINATIONS:				
IS THE COURSE OFFERED		No		
TO ERASMUS STUDENTS				
COURSEWEBSITE		https://eclass.uniwa.gr/courses/NA201/		
(URL)		https://eclass.uniwa.gr/courses/NAFP135/		

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to educate the student and acquire knowledge on

basic principles and concepts of Physics such as:

Waves, Electric Fields, Current and Resistance, Circuits, Magnetic Fields, Electromagnetic Oscillations and Alternating Current.

Learning outcomes:

By attending the course successfully, the students will have acquired the knowledge and will have understood the basic principles and laws of electricity, magnetism and electromagnetism, and will be able to analyze and interpret phenomena where associated with electromagnetism.

Knowledge of the methodology and skills they will have developed, will give them the ability to solve problems.

They will become familiar with the equipment and techniques used in a scientific laboratory: laboratory procedures and practices, data analysis.

They will be able to design experiments.

They will be able to analyze and present experimental results using elements of error theory

and graphs.

They will be able to combine and interpret results extracted by analyzing experimental data.

General Competences

Search, analyze and synthesize data, using the necessary technologies.

Working independently and team work.

Promote free, creative and inductive thinking.

(3) COURSE CONTENT / SYLLABUS

Waves. The wave equation. The Principle of Superposition for Waves. Standing Waves and Resonance.

Coulomb's law. Electric Fields, Gauss' Law. Electric Potential. Current and Resistance. Ohm's Law Circuits. RC Circuits. Magnetic Fields. Magnetic Fields Due to Currents. Electromagnetic Oscillations and Alternating Current. The Series RLC Circuit.

Laboratory: Experiments in electromagnetism. Electric current, resistance measurement. Alternating current. RC, RL, RCL circuits.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND	Use of ICT in Teaching and Laboratory		
COMMUNICATIONS	Education.		
TECHNOLOGY	Use of the e-course learning system, with		
Use of ICT in teaching, laboratory education,	uploaded notes, exercises for practice and		
communication with students	communication with students.		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	39	
described in detail.	Laboratory exercises	26	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of	Homework assignments	26	
bibliography, tutorials, placements, clinical	Study of Lectures	65	
practice, art workshop, interactive teaching,			
educational visits, project, essay writing,			
artistic creativity, etc. The student's study hours for each learning			
activity are given as well as the hours of	Course total	156	
non- directed study according to the			
principles of the ECTS	_		
STUDENT PERFORMANCE	Assessment Language: Greek		
EVALUATION			
Description of the evaluation procedure	Written final exam (60%)		

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Laboratory Exercises (40%)

Assessment criteria are defined and presented to the students at the beginning of the course.

(5) ATTACHED BIBLIOGRAPHY

- 1) Πανεπιστημιακή φυσική με σύγχρονη φυσική, Β ΤΟΜΟΣ 2η ελληνική έκδοση / 2010 Young H., Freedman R. ISBN: 978-960-02-2473-3
- 2) ΗΛΕΚΤΡΙΣΜΟΣ ΚΑΙ ΜΑΓΝΗΤΙΣΜΟΣ, Edward M. Purcell έκδοση 1η/2004 ISBN: 960-254-649-2
- 3) Φυσική για Επιστήμονες και Μηχανικούς, Τόμος Β, Giancoli 4η έκδοση/2011 ISBN: 978-960-418-376-0