COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NA0ME1211		SEMESTER	2 nd
COURSE TITLE	MECHANICS II			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			5	6
				0
COURSE TYPE general background, special background, specialized, general knowledge, skills development		Special Background	I	
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and		Greek		
IS THE COURSE OF TO ERASMUS STU	FERED DENTS	No		
COURSEW	EBSITE (URL)			

(2) COURSE GOALS / LEARNING OUTCOMES

Students after successful attendance of the course shall be familiar with notions and techniques of various problems encountered in structure analysis, as:

- Tension
- Shear
- Bending
- Torsion
- Buckling
- Hardness measurement

(3) COURSE CONTENT / SYLLABUS

- Introduction Basic principles, Stress and strain diagrams, failure stress, safety factor, fatigue of materials.
- Axial tension-compression. Hooke's law, Poisson ratio, thermal stresses, statically indeterminate problems.
- Simple shear loading.
- Plane stress and strain, Mohr's circle, Generalized Hooke's law.
- Pure and general bending of beams. Radius of curvature, maximum normal stresses, beams made of composite materials, distribution of shear stresses, principal stresses. Method of Elastic Beam Curve, method of superposition, method of conjugate beam.
- Torsion of circular shafts, of thin-walled section and of cellular section.
- Statically indeterminate problems.
- Complex loadings: Buckling, Double and/or non-symmetric bending, eccentric axial loading.
- 3D loading condition, stress and strain tensors, generalized Hooke's law.
- Energy methods: Deflection energy in axial loading, bending moment, shear force, torsion moment and complex loading. Introduction to virtual work principle. Castigliano's theorem.
- Failure analysis tests.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Homework assignments, Lectur	es	
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	65	
described in detail.	Homework assignments	39	
fieldwork, study and analysis of	Study of Lectures	52	
bibliography, tutorials, placements, clinical			
practice, art workshop, interactive teaching, educational visits, project, essay writina.			
artistic creativity, etc.			
The student's study hours for each learning			
non- directed study according to the	Course total	156	
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Final written examination : 60%		
Description of the evaluation procedure	Homework assignments: 40%		
evaluation, summative or conclusive, multiple			
choice questionnaires, short-answer questions,			
open-ended questions, problem solving, written work, essav/report, oral examination, public			
presentation, laboratory work, clinical			
examination of patient, art interpretation,			

(5) ATTACHED BIBLIOGRAPHY

- 1. S. Timoshenko, "Strength of materials Part 1: Elementary theory and problems", D. Van Nostrand Company, 1948
- 2. Beer, Johnston, DeWolf, Mazurek, "Mechanics of Materials", Mac Graw Hill, 2015
- 3. P. Vouthounis, «Mechanics of deformable bodies-Strength of materials», 2013 (In Greek).

- Related Journals:

- 1. Journal of Mechanics, Cambridge University Press.
- 2. European Journal of Mechanics, Elsevier.
- 3. Journal of Applied Mechanics, ASME.