COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1120		SEMESTER	4 th
COURSE TITLE	DIFFERENTIAL EQUATIONS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures		4	Λ	
			4	
COURSE TYPE general background, specialbackground, specialised general knowledge, skills develooment		General background		
PREREQUISITE COURSES:		Mathematical Analysis I, Mathematical Analysis II		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek		
IS THE COURSE OFFE ERASMUS ST	IE COURSE OFFERED TO ERASMUS STUDENTS			
COURSEWEBSIT	E(URL)			

(2) COURSE GOALS / LEARNING OUTCOMES

The laws of nature are expressed as differential equations and almost all science and engineering disciplines use differential equations to model various natural phenomena. Scientists and engineers must know how to solve those equations and interpret the solutions. The course focuses on linear differential equations and their applications in science and engineering.

Learning outcomes:

On completion of this course the student should be able to:

- Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution of first and second order ordinary differential equations.
- Solve linear systems of ordinary differential equations.
- Classify partial differential equations, apply analytical methods, and physically interpret the solutions.
- Use the method of separation of variables to solve some partial differential equations.

(3) COURSE CONTENT / SYLLABUS

Ordinary Differential Equations (ODEs): Definition, initial value problems and related theorems. First order linear differential equations, Bernoulli and Riccati equations. Second order differential equations. First order systems.

Partial Differential Equations (PDEs): Differential equations of classical Mathematical Physics (Laplace, Heat, Wave equation). First order PDEs. Classification of second order PDEs. Boundary value problems. Separation of variables. Green's functions. Integral transforms, the Fourier Transform, the Laplace transform.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of ICT in teaching. Use of mathematical software. Support learning through the electronic e-class platform. 		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	39	
described in detail. Lectures seminars laboratory practice	Practice exercises (tutorials)	13	
fieldwork, study and analysis of	Study of Lectures	65	
bibliography, tutorials, placements, clinical			
educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning activity are given as well as the hours of			
non- directed study according to the	Course total	117	
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure Language of evaluation, methods of	Final written examination: 100%		
evaluation, summative or conclusive, multiple			
cnoice questionnaires, snort-answer questions, open-ended questions, problem solving, written			
work, essay/report, oral examination, public			
examination of patient, art interpretation.			
other			

ATTACHED BIBLIOGRAPHY

- 1. W.E. Boyce, R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th edition, Wiley, 2009.
- 2. W.A. Strauss, Partial Differential Equations: An Introduction, Wiley, 2008.
- 3. G.F. Simmons, Differential Equations with applications and historical notes, McGraw-Hill, Inc., New York, 1991.
- 4. I. Sneddon, Elements of Partial Differential Equations, McGraw-Hill, Inc., 1964.
- 5. E. Kreyszig, Advanced Engineering Mathematics, Wiley, 2011.