COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOM	E1222	SEMESTER	4 th
COURSE TITLE	VISCOUS FLOWS - FLUID MACHINERY			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			4	Б
				5
COURSE TYPE		Special background		
general background,				
knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION		Greek		
and EXAMINATIONS:				
IS THE COURSE OFFERED TO		Yes		
ERASMUS STUDENTS				
COURSEWEBSIT	re(URL)	https://eclass.uniwa.	gr/courses/NA212/	

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to educate the student in order to be able to understand and solve problems of fluid mechanics in incompressible and compressible viscous flows. Apart from the basic principles, topics of applied fluid mechanics are included, focusing on duct flows, hydraulic networks and fluid dynamic machines. After the completion of the course, the student will be able to:

- Be aware of basic viscous flow phenomena.
- Calculate flow rates and losses and design / size hydraulic networks.
- Be aware of the various fluid machines and their principle of operation.
- Select the appropriate pump for a hydraulic network.

(3) COURSE CONTENT / SYLLABUS

Lectures:

- Fluid viscosity. Navier-Stokes equations. Analytical flow solutions in simple geometries. Effect of viscous terms. Measurement of fluid mechanical quantities pressure, velocity, flow rate, viscosity coefficient). Dimensional analysis. Rayleigh and Buckingham method. Similitude theory (geometrical, kinematic and dynamic similarity). Reynolds, Froude, Weber and Euler numbers. Prototype testing.
- Boundary layer, calculation of boundary layer thickness, flow separation, flow around bodies, drag. Laminar and turbulent flow. Turbulent boundary layer. Incompressible flow in a duct, laminar and turbulent, flow losses, Moody diagram, secondary losses, hydraulic networks and their calculation.

- Fluid dynamic machines, classification, (hydrodynamic machines, thermal turbomachines). Euler theorem operation, velocity triangles. Centrifugal pumps, specific speed, pumps in serial and in parallel configurations, diagrams. Characteristic curve of a hydraulic network, location of operation point. Reference to hydraulic turbines. Cavitation phenomenon.
- Elements of compressible flow, sound velocity, Mach number, isentropic flow, stagnation state, compressibility phenomena. Compressors, turbines, classification, isentropic and polytropic efficiency, aerothermodynamic one-dimensional analysis of thermal turbomachines.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	 Support learning through the electronic e-class platform. 		
COMMUNICATIONS			
TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	52	
described in detail.	Homework assignments	26	
fieldwork study and analysis of	Individual study	52	
bibliography, tutorials, placements, clinical			
practice, art workshop, interactive teaching,			
educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning			
non- directed study according to the	Course total	130	
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Evaluation:		
Description of the evaluation procedure	Written examination (100%).		
evaluation, summative or conclusive, multiple	Alternatively, percentage of the final mark could be		
choice questionnaires, short-answer questions, open-ended auestions, problem solving, written	obtained by means of an assignment or a project		
work, essay/report, oral examination, public	presentation.		
presentation, laboratory work, clinical	•		
examination of patient, art interpretation,			
ULIEI			

(5) ATTACHED BIBLIOGRAPHY

- 1. Munson, Okooshi, Huensch, Rothmayer, Fundamentals of Fluid Mechanics, 7th edition, Wiley, 2012.
- 2. White, F.M., "Fluid Mechanics", 5th edition, McGraw Hill, 2003.
- Pritchard P.J., Fox and McDonald's Introduction to Fluid Mechanics, 8th edition, Wiley, 2011.
- 4. Karassik, I., Messina, J., Cooper P., Heald C., 2008, "Pump Handbook", 4th edition.