COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1229		SEMESTER	5 th
COURSE TITLE	INTRODUCTION TO CONTROL SYSTEMS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			2	4
		Laboratory	2	4
		Total	4	
COURSE TYPE general background, specialbackground, specialised general knowledge, skills development		Special background		
PREREQUISITE COURSES:		Fundamentals of Electrical engineering (NAOME1221)		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek		
IS THE COURSE OFFERED TO		Yes		
COURSEWEBSITE(URL)		https://eclass.uniwa.gr/courses/NA222/		

(2) COURSE GOALS / LEARNING OUTCOMES

The main objective of the course is to introduce students to the fundamental principles of basic control theory (i.e. open/closed loop systems, Laplace transform, Transfer functions of typical 1st and 2nd order systems, steady state error, stability, Routh's stability criterion, time response, frequency response, P, PI, PID controllers, etc), Programmable Logic Controllers (principle of operation, LADDER language) and characteristic ship automation systems.

(3) COURSE CONTENT / SYLLABUS

- Fundamental principles of control theory (basic types of automation systems, block diagrams, open/closed loop systems, Laplace transform, transfer function, steady state error, stability, Routh's stability criterion, time response, frequency response, Bode diagrams)
- Controllers employed on a typical control system (two-step, P,PI PID)
- Principles and applications of Programmable Logic Controllers (PLC)
- LADDER programming language
- Typical ship automation systems

Laboratory: Apart from the 2h weekly instructions, the specific module incorporates also a laboratory part where students have the opportunity to perceive practically the key principles introduced at lectures, by performing appropriate "hands-on" exercises.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of ICT in teaching Use of specialized Laboratory equipment Asynchronous e-learning support through "Open eClass" platform 		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	26	
described in detail. Lectures, seminars, laboratory practice,	Laboratory exercises –	26	
fieldwork, study and analysis of bibliography,	Laboratory technical reports		
tutorials, placements, clinical practice, art	Study of Lectures	65	
workshop, interactive teaching, educational visits, project, essay writing, artistic			
creativity, etc.			
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of	Course total	117	
the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Lectures:		
Description of the evaluation procedure Language of evaluation, methods of evaluation,	Final written examination (75%)		
summative or conclusive, multiple choice	Laboratory:		
questionnaires, short-answer questions, open- ended questions, problem solving, written work,	- Written examination (20%)		
essay/report, oral examination, public	- Laboratory technical reports (5%)		
presentation, laboratory work, clinical examination of patient, art interpretation, other		•	

(5) ATTACHED BIBLIOGRAPHY

- 1. Συστήματα αυτόματου ελέγχου, Α.Ν. Βελώνη, Δ.Κ. Κανδρής, εκδόσεις Τζιόλα, 2017
- 2. Συστήματα αυτόματου ελέγχου, Π.Β. Μαλατέστας, εκδόσεις Τζιόλα, 2017
- 3. Προγραμματιζόμενοι Λογικοί Ελεγκτές, F. Petruzella, εκδόσεις Τζιόλα, 2018
- 4. Εισαγωγή στον αυτόματο έλεγχο Θεωρία και εφαρμογές, Ν.Ι. Κρικελής, εκδόσεις Συμμετρία, 2000
- 5. Modern control systems, R. C. Dorf, R.H. Bishop, Prentice Hall, 2010
- 6. Control systems engineering, N.S. Nise, Wiley, 2011
- 7. Journal of Marine Science and Application, ISSN: 1671-9433
- 8. Journal of Marine Science and Technology, ISSN: 0948-4280
- 9. Transactions of the Society of Naval Architects and Marine Engineers [S.N.A.M.E.], ISSN: 0081-161
- 10. SAE Technical papers, ISSN: 0148-7191