COURSE OUTLINE

(1) GENERAL

(2) COURSE GOALS / LEARNING OUTCOMES

Over the last decades the use of probability models and statistical methods has become common practice among the engineers. With reference to naval and marine technology it should be noted that ships and marine structures are exposed to the sea environment which may be best represented by a stochastic point of view. Furthermore, there is a trend in integrating the probabilistic approach into marine safety regulations, while there is an increasing use of risk-based design for ships and naval systems in maritime industry.

In view of the above, the purpose of this course is to introduce students in probability theory and in basic statistical methodology that will assist them to gain an in-depth understanding of various topics in marine engineering.

Learning outcomes:

On completion of this course the student should be able to:

- understand the basic concepts of probability and random variables,
- compute and interpret descriptive statistics,
- compute confidence intervals associated with sample means and handle statistical hypothesis tests,
- apply statistical techniques and methodology in engineering problem-solving processes,
- understand the basic concepts of stochastic processes which are used for the representation of wind waves environment (normal stochastic processes, ocean waves spectra, spectral parameters).

(3) COURSE CONTENT / SYLLABUS

Probability

Events and their probability, Probability laws. Total probability theorem, Independence, Bayes' theorem. Random variables, discrete and continuous probability distributions. Moments of variables. The central limit theorem.

Statistics

Descriptive statistics, Confidence intervals, Statistical hypothesis testing, Linear regression analysis.

Applications in Marine Technology

Introduction to stochastic processes. Stochastic character of wind waves. Wave spectra and spectral moments. Normal stochastic processes. Ocean waves as a normal stochastic field.
(4) TEACHING and LEARNING METHODS - EVALUATION

(5) ATTACHED BIBLIOGRAPHY

1. D.P. Bertsekas, J.N. Tsitsiklis, Introduction to Probability, 2 ${ }^{\text {nd }}$ Edition, Athena Scientific, 2008.
2. S. Ross, A First Course in Probability, 8th Edition, Prentice Hall, 2010.
3. S. Ross, Introductory Statistics, 4th Edition, Academic Press, 2017.
4. R.E. Walpole, R.H. Myers, S.L. Myers, K.E. Ye, Probability \& Statistics for Engineers \& Scientists, MyLab Statistics Update, 9th Edition, Pearson, 2017.
