COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School of Engineering				
ACADEMIC UNIT	Department of Naval Architecture				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	NAOME1232		SEMESTER	5 th	
COURSE TITLE	HEAT TRANSFER				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)	
Lectures			4	4	
			7		
COURSE TYPE		Special background			
general background,					
specialbackground, specialized general knowledge, skills development					
PREREQUISITE COURSES:					
	JUNJEJ.				
LANGUAGE OF INSTRUCTION		Greek			
and EXAMINATIONS:					
IS THE COURSE OFFE	IS THE COURSE OFFERED TO		Yes		
ERASMUS STUDENTS					
COURSEWEBSIT	E(URL) https://eclass.uniwa.gr/courses/NA213/				

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to educate the student in order to be able to understand and solve Heat Transfer problems. After the completion of the course, the student will be able to:

- Know the three heat transfer modes (conduction, convection, diffusion) and understand their basic principles and governing laws.
- Apply the appropriate governing equations in the analysis of basic heat transfer problems.
- Perform steady-state heat transfer calculations in simple and complex geometries, involving combination of heat transfer modes.
- Perform basic calculations for the sizing and rating problems of heat exchangers.

(3) COURSE CONTENT / SYLLABUS

Lectures:

- Introduction to heat transfer, thermophysical properties of materials, heat conductivity, heat transfer modes.
- Conduction, Fourier's law, thermal resistance, one-dimensional conduction in simple and composite-layer plane, cylindrical and spherical geometries, critical and optimum insulation thicknesses. Extended heat transfer surfaces, fins and their efficiency. Introduction to transient heat conduction.
- Convection, forced and natural. Hydraulically and thermally fully developed flow. Velocity

and temperature boundary layer, laminar and turbulent flow, Reynolds, Prandtl and Nusselt numbers. Forced convection over plane, cylindrical and spherical geometries, in transverse flow around bundle of tubes, internal flow convection in ducts. Natural convection around bodies, Grashof number. Combined forced and natural convection.

- Radiation, black body, laws of Planck, Stefan-Boltzmann, Wien, Kirchoff, radiation properties of surfaces, coefficients of emission, absorption, reflection and permeability, grey body, radiation heat transfer, surface view coefficient.
- Conjugate heat transfer problems. Heat exchangers, classification. Calculation of geometry for given performance (sizing). Calculation of performance for given geometry (rating). Logarithmic Mean Temperature Difference (LMTD), NTU method.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education,	 Support learning through t e-class platform. 	he electronic	
communication with students TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	52	
described in detail.	Homework assignments	26	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of	Individual study	39	
bibliography, tutorials, placements, clinical			
practice, art workshop, interactive teaching,			
educational visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of			
non- directed study according to the principles of the ECTS			
P - P	Course total	117	
STUDENT PERFORMANCE			
EVALUATION	Evaluation:		
Description of the evaluation procedure Language of evaluation, methods of	Written examination (100%).		
evaluation, summative or conclusive, multiple	Alternatively, percentage of the final mark could be		
choice questionnaires, short-answer questions, open-ended questions, problem solving, written	obtained by means of an assignment or a project		
work, essay/report, oral examination, public	presentation.		
presentation, laboratory work, clinical examination of patient, art interpretation,			
other			

(5) ATTACHED BIBLIOGRAPHY

- 1. Holman J. P., 2009, Heat Transfer, McGraw Hill (10th edition).
- 2. Incropera F. P., Dewitt D. P., Bergman T. L., Lavine A. S., 2006, Introduction to Heat Transfer, John Wiley & sons, Inc. (5th edition).
- Kakaç Σ., Liu H., Pramuanjaroenkij A., Heat Exchangers: Selection, Rating, and Thermal Design, Third Edition, CRC Press, 2012.