COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School	l of Engineering		
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES				
	Undergraduate			
COURSE CODE	NAOME1338		SEMESTER	6 th
COURSE TITLE	STEAM BOILERS, STEAM TURBINES, AND APPLICATIONS IN MARINE ENGINEERING			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
	Lectures		4	4
				4
COURSE TYPE		Specialized		
general background,				
specialbackground, specialized general				
knowledge, skills development				
PREREQUISITE COURSES:		Thermodynamics		
		Greek		
LANGUAGE OF INSTRUCTION		Greek		
and EXAMINATIONS:				
IS THE COURSE OFFERED TO		Yes		
ERASMUS STUDENTS				
COURSEWEBSIT	TE(URL)	https://eclass.uniwa.gr/courses/ET153/		

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to educate the student in order to obtain the theoretical and practical knowledge concerning steam production technology, as well as its use for power production through steam turbines. After the completion of the course, the student should:

- Be aware of basic elements of steam production technology, corresponding boiler configurations, basic subsystems and related measurement devices.
- Have the knowledge of power production by means of steam turbines and required auxiliary devices.
- Know heat losses and be able to calculate efficiency of a steam boiler, as well as of a steam boiler-steam turbine plant.

(3) COURSE CONTENT / SYLLABUS

Lectures:

- Water vaporization, steam boilers (classification, description, operational characteristics).
- Combustion and related calculations in steam boilers, dew point of flue gases, fuels, burners and combustion systems (for compatible solid, liquid or gas fuels).
- Energy calculations of a steam boiler, efficiency, heat losses.
- Main systems (vaporizator, superheater, reheaters, preheaters) and auxiliary systems (pumps, fans, elements of steam network, instruments for monitoring, safety, control, measurement) of steam boilers. Boiler maintenance and water processing issues.

- Energy production by means of steam turbines, ideal and real Rankine cycles, modifications of Rankine cycle for efficiency enhancement, reference to alternative cycles (e.g. Binary and Organic Rankine Cycles).
- Classification and characteristics of steam turbines, condensers, cooling towers, energy calculations. Thermal efficiency of a steam boiler-turbine plant. Matching and cooperation of steam boiler and steam turbine. Load control, operation in partial loads.
- Applications of steam boilers and steam turbines in Marine Engineering (Marine boilers, energy systems in ships, cogeneration, combined cycle).

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Support learning through t e-class platform. 	the electronic	
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	44	
described in detail.	Laboratory demonstration	8	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of	Homework assignments	39	
bibliography, tutorials, placements, clinical	Individual study	52	
practice, art workshop, interactive teaching, educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of non- directed study according to the			
principles of the ECTS			
	Course total	143	
STUDENT PERFORMANCE			
EVALUATION	Lectures:		
Description of the evaluation procedure Language of evaluation, methods of	Written examination (100%).		
evaluation, summative or conclusive, multiple	Alternatively, percentage of the final mark could be		
choice questionnaires, short-answer questions, open-ended questions, problem solving, written	obtained by means of an assignment or project		
work, essay/report, oral examination, public	presentation.		
presentation, laboratory work, clinical examination of patient, art interpretation,	-		
other			

(5) ATTACHED BIBLIOGRAPHY

- E.B. Woodruff, H.B. Lammers, T.F. Lammers, "Steam Plant Operation", 7th Edition, Mc Graw Hill, 1998.
- D. Anarratone, "Steam Generators: description and design", Springer Verlag, 2008.
- V. Ganapathy, "Industrial Boilers and Heat Recovery Steam Generators: design, application and calculations", Marcel Dekker, 2003.
- Flanagan G.T.H., Marine boilers, Oxford : Newnes, 1990.