COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School	of Engineering		
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1247		SEMESTER	7 th
COURSE TITLE	REFRIGERATION – AIR CONDITIONING			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			4	4
			'	
COURSE TYPE general background, specialbackground, specialized general		Special background		
knowledge, skills development PREREQUISITE COURSES:		NAOME1217 - Thermodynamics		
PRENEQUISITE COURSES.				
LANGUAGE OF INSTRUCTION		Greek		
and EXAMINATIONS:				
IS THE COURSE OFFERED TO		Yes		
ERASMUS ST	ERASMUS STUDENTS			
COURSEWEBSIT	re(URL)	URL) https://eclass.uniwa.gr/courses/NA208/		

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to understand the principles of thermal comfort air conditioning, as well as the need for industrial refrigeration and to be able to design the required relevant systems. After the completion of the course, the student should:

- Know the basic characteristics of the refrigeration and air conditioning systems in small scale applications and industrial plants.
- Perform calculations of heat losses and cooling loads in a closed space.
- Demonstrate in simple case studies the calculation and design of a ventilation and air conditioning system, as well as the related refrigeration plant.
- Be aware of energy conservation technologies and environmental laws concerning CO2 reduction, in order to design mechanical engineering plants with ecological conscience.

(3) COURSE CONTENT / SYLLABUS

Lectures:

- Introduction, definition, thermal comfort air conditioning, industrial refrigeration, applications in Marine Engineering, kinds of cooling machines, thermodynamics of cooling cycles, inverse Rankine and Brayton cycles. Trigeneration plants.
- Theoretical and real cooling vapor compression cycles, compressor isentropic efficiency, superheating of refrigerant vapor, subcooling of refrigerant condensate. Calculation and improvement of coefficient of performance (COP). Two-stage and multi-stage refrigeration systems. Heat pump and its operation in heating and cooling modes. Elements of

refrigeration plants: compressors (various types), condensers (air-cooled, water-cooled) evaporators, expansion valves, control and safety systems. Performance calculations in refrigeration plants. Vapor absorption refrigeration plants (H2O/LiBr and NH3/H2O). Environmental impact of refrigerants, Ozone Depletion Potential (ODP), Global Warming Potential (GWP). Reference to liquefaction cycles (high-low pressure), cryogenic gases.

- Psychrometry, psychrometric chart, psychrometric processes, sensible and latentloads, the air conditioning problem. Thermal comfort, required ventilation, selection of indoor and outdoor design conditions, kinds of cooling loads, thermal inertia, time lag phenomena. Calculation of heating and cooling loads.
- Overview of an air conditioning system. Mechanical installations. Classification of air conditioning systems. Calculation of air conditioning systems on the psychrometric chart. Design of air conditioning system in case studies. Calculation of cooling coil, hydraulic network, duct sizing and pump selection. Mechanical ventilation, calculation of air ducts, fans and air diffusers. Air-to-air heat exchangers. Part-load operation, energy consumption estimation. Reference to control and energy conservation systems in air conditioning plants.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Support learning through t e-class platform. 	the electronic	
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	44	
described in detail.	Laboratory demonstration	8	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of	Homework assignments	30	
bibliography, tutorials, placements, clinical	Individual study	35	
practice, art workshop, interactive teaching,			
educational visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of			
non- directed study according to the principles of the ECTS			
principles of the ECTS	Course total	117	
STUDENT PERFORMANCE			
EVALUATION	Evaluation:		
Description of the evaluation procedure	Alternatively, percentage of the final mark could be		
Language of evaluation, methods of evaluation, summative or conclusive, multiple	obtained by means of an assignment or project		
choice questionnaires, short-answer questions,	presentation.		
open-ended questions, problem solving, written work, essay/report, oral examination, public	P. 00011000		
presentation, laboratory work, clinical			
examination of patient, art interpretation,			
other			

(5) ATTACHED BIBLIOGRAPHY

- McQuiston C. F, Parker D. J., Heating, Ventilating and Air Conditioning. Design and Analysis, 1994.
- Whitman W.C., Johnson W.M., Tomczyk, J.A. Refrigeration and Air Conditioning Technology, Concepts, Procedures, and Troubleshooting Techniques, Delmar Publishing, 7th edition, 2013.