COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering			
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME 1267		SEMESTER	8th
COURSE TITLE	ATOMIC – NUCLEAR PHYSICS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
		Lectures 3		4
				4
COURSE TYPE		Special Background		
general background,				
specialbackground, specialised general				
knowledge, skills development PREREQUISITE				
COURSES:				
LANGUAGE OF		Greek		
INSTRUCTION and				
EXAMINATIONS:				
IS THE COURSE OFFERED		No		
TO ERASMUS STU	DENTS			
COURSEWEBSITE		https://eclass.uniwa.gr/courses/NA223/		
(URL)				

(2) COURSE GOALS / LEARNING OUTCOMES

The aim of the course is to educate the student and to acquire knowledge on basic principles and concepts of Atomic and Nuclear Physics such as:

Structure of the Atom. Laser emission. Molecules and Solids. Nuclear structure. Nuclear decay and radioactivity. Ionizing radiation. Nuclear Technology.

Learning outcomes:

By attending the course successfully, the students will have acquired the knowledge and will have understood the basic principles of Atomic and Nuclear Physics and will be able to analyze and interpret phenomena related to the structure of matter.

Knowledge of the methodology and skills they will have developed, will give them the ability to solve problems.

They will be able to :

- understand the quantization of energy,
- explain Pauli's principle and its consequences on atomic structure.
- describe the operating principles of the LASER.
- explain concepts concerning the nuclear structure.
- explain the operation principles of Nuclear Physics application in energy

- production, medicine, etc.
- describe the nuclear reactions and be able to perform simple calculations.

General Competences

- Search, analyze and synthesize data, using the necessary technologies.
- Working independently and team work.
- Promote free, creative and inductive thinking.

(3) COURSE CONTENT / SYLLABUS

- Atomic Physics basic concepts. Hydrogen atom. Multielectron atoms. Pauli exclusion principle and periodic table.
- Stimulated light emission and laser.
- Molecules and solids: molecular bonds and spectra.
- Nuclear structure basic concepts. Classification of nuclei. Nuclear structure models. Radioactive decay, alpha particles, beta particles, and gamma rays. Fission and fusion. Radiation Dosimetry.
- Nuclear technologies (Nuclear Reactors, nuclear-powered ships).
- Hydrogen fuel.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS	Use of ICT in Teaching and Laboratory Education. Use of the e-course learning		
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	system, with uploaded notes, exercises for practice and communication with students.		
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	39	
described in detail. Lectures, seminars, laboratory practice,	Homework assignments	26	
fieldwork, study and analysis of	Study of Lectures	52	
bibliography, tutorials, placements, clinical	Study and preparation for exam		
practice, art workshop, interactive teaching, educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning	Course total	117	
activity are given as well as the hours of			
non- directed study according to the principles of the ECTS			
STUDENT PERFORMANCE	Assessment Language: Greek		
EVALUATION			
Description of the evaluation procedure	Written final exam (80%)		
Language of evaluation, methods of evaluation, summative or conclusive, multiple	Homework assignments (20%)		
choice questionnaires, short-answer questions,			
open-ended questions, problem solving, written	Assessment criteria are defined and presented to the		
work, essay/report, oral examination, public presentation, laboratory work, clinical	students at the beginning of the course.		
examination of patient, art interpretation,			
other			

(5) ATTACHED BIBLIOGRAPHY

Πανεπιστημιακή φυσική με σύγχρονη φυσική Γ ΤΟΜΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ-ΣΥΓΧΡΟΝΗ
 ΦΥΣΙΚΗ 2η ελληνική έκδ. 2011 Συγγραφείς: Young H., Freedman R. ISBN 978-960-02-2535-8

• Φυσική για Επιστήμονες και Μηχανικούς Τόμος Β 2011 Εκδόσεις ΤΖΙΟΛΑ Συγγραφείς: Giancoli ISBN 978-960-418-376-0