COURSE OUTLINE

(1) **GENERAL**

SCHOOL	School	of Engineering		
ACADEMIC UNIT	Department of Naval Architecture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	NAOME1355		SEMESTER	8 th
COURSE TITLE	SPECIAL TOPICS IN COMBUSTION WITH APPLICATIONS IN MARINE ENGINES			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS (ECTS)
Lectures			3	4
COURSE TYPE general background, specialbackground, specialised general knowledge, skills development		Specialised		
PREREQUISITE COURSES:		NAOME1223 - INTERNAL COMBUSTION ENGINE		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:		Greek		
IS THE COURSE OFFERED TO		Yes		
ERASMUS STUDENTS				
COURSE WEBSITE (URL)		https://eclass.uniwa.gr/courses/NA240/		

(2) COURSE GOALS / LEARNING OUTCOMES

This course covers special topics in the theory of Combustion of all fuels, with particular emphasis placed on the in-cylinder combustion process of liquid and gaseous fuels, as well as combinations of them. The increased utilization of Dual Fuel marine engines, as well as the expected use of non-fossil fossil fuel in the mid-term, necessitate the in depth understanding of the fundamental phenomena governing the combustion process.

The main aim is to familiarize the students with the complexity of the combustion phenomena involving elements from Thermodynamics, Fluid Mechanics, Heat and Mass transfer and Chemical Kinetics. The understanding of the mechanisms creating of the formation of pollutants and Greenhouse gases is quite essential and becomes even more important nowadays, given the current and future stringent regulations imposed by the IMO._

Upon the completion of the present course, the students will be able to

- Understand the basic combustion mechanisms of liquid and gaseous fuels
- Knows all the fuel characteristics relevant to their use in several practical technological systems
- Understand the various types of flames and their implementation in practical systems
- Analyse the pollutant formation mechanism, especially those related to in-cylinder processes.
- Knows the relevant pollutant measurement systems employed in the marine sector
- Validate and propose strategies to lower emissions according to the current IMO standards
- Be aware of the alternative propulsion solutions considered for the marine sector, such as fuel cells

(3) COURSE CONTENT / SYLLABUS

Definition of Combustion – Historical perspective Complexity of Combustion phenomena – Elements of Thermodynamics, Fluid Mechanics, Heat and Mass transfer, Chemical Kinetics. Complete and Incomplete combustion, stoichiometry, Heat content of fuels Laminar and Turbulent flames Premixed and diffusion flames Practical combustion systems for solid, liquid and gaseous fuels Injection of liquid fuels – atomization – mixing with air - in-cylinder processes Pollutant formation – Emission of Greenhouse gases: carbon dioxide and methane Pollutant abatement methods Pollutant and GHG measurement systems Thermochemistry – Fuel cell systems

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face lectures & homework assignments		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Support learning through t e-class platform. 	he electronic	
TEACHING METHODS	Activity	Workload (hours)	
The manner and methods of teaching are	Lectures	29	
described in detail.	Exercises	10	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Homework assignments	30	
tutorials, placements, clinical practice, art	Study of Lectures	48	
workshop, interactive teaching, educational			
visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-	Course total	117	
directed study according to the principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	Written examination (70%) + including theory		
Description of the evaluation procedure	questions and arithmetic exercises.		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice	Homework assignment based on bibliographic study		
questionnaires, short-answer questions, open-			
ended questions, problem solving, written work,	(30%).		
essay/report, oral examination, public presentation, laboratory work, clinical			
examination of patient, art interpretation, other			

(5) ATTACHED BIBLIOGRAPHY

- S Turns "An Introduction to Combustion: Concepts and Applications" 3rd Edition, McGraw-Hill, 2012
- Warnatz, J, Maas U, Dibble, R.W, "Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation", 4th edition, Springer-Verlag, 2006